Glucomannan from Porang (Amorphophallus muelleri) Improves Short-Chain Fatty Acid in Wistar Rat with High-Fat and High-Fructose Diet

Main Article Content

Agustinus I Wayan Harimawan
Corresponding Author:
Agustinus I Wayan Harimawan | harimawanagustinus650@gmail.com



Abstract

Introduction: Short-chain fatty acids (SCFAs) improve lipid profile and prevent coronary artery disease. Searching for nutrition based on local foods that might raise the body's SCFA levels is imperative. Porang (Amorphophallus muelleri) is a plant with a high concentration of glucomannan that is investigated to have a healthy benefit. This study aimed to investigate the effect of glucomannan from Porang (A.muelleri) on SCFA in Wistar rats with a high-fat, high-fructose diet.
Methods: This was an experimental study with a randomized and post-test-only control group design. Thirty male Wistar rats were divided into five groups: a normal control group, a negative control group given a high-fat, high-fructose diet, and treatment groups given Porang glucomannan 25mg, 50mg, or 100mg/200gBW. Twenty-eight days after the intervention, the SCFA level was measured using gas chromatography–masstry (GC/MS). Data were analyzed in SPSS.
Results: The treatment group with Porang glucomannan 50 mg/200gBW has the highest mean SCFA level (3.98±0.83 nmol/ml) compared to normal control (1.56±0.24), negative control (2.18±0.45), treatment group 25mg/200gBW (1.81±0.26), and treatment group 100mg/200gBW (2.58±0.38). Kruskal Wallis test showed significant differences among groups (p<0.001). Post hoc test revealed that SCFA in the treatment group 50 mg was significantly higher than the normal control and negative control group.
Conclusion: Glucomannan from Porang (A.muelleri) at 50 mg/200gBW doses improves short-chain fatty acid in Wistar rats with high-fat and high-fructose diets.

Article Details

How to Cite
[1]
A. I. W. Harimawan, “Glucomannan from Porang (Amorphophallus muelleri) Improves Short-Chain Fatty Acid in Wistar Rat with High-Fat and High-Fructose Diet ”, Babali Nurs. Res., vol. 5, no. 2, pp. 297-307, Apr. 2024.
Section
Original Research

References

[1] W. Li, M. Zuo, H. Zhao, Q. Xu, and D. Chen, “Prediction of coronary heart disease based on combined reinforcement multitask progressive time-series networks.,” Methods (San Diego, Calif.), vol. 198, pp. 96–106, Feb. 2022, doi: 10.1016/j.ymeth.2021.12.009.
[2] Y. Zhao et al., “Structure-Specific Effects of Short-Chain Fatty Acids on Plasma Cholesterol Concentration in Male Syrian Hamsters.,” Journal of agricultural and food chemistry, vol. 65, no. 50, pp. 10984–10992, Dec. 2017, doi: 10.1021/acs.jafc.7b04666.
[3] A. Haghikia et al., “Propionate attenuates atherosclerosis by immune-dependent regulation of intestinal cholesterol metabolism.,” European heart journal, vol. 43, no. 6, pp. 518–533, Feb. 2022, doi: 10.1093/eurheartj/ehab644.
[4] Y. Feng and D. Xu, “Short-chain fatty acids are potential goalkeepers of atherosclerosis.,” Frontiers in pharmacology, vol. 14, p. 1271001, 2023, doi: 10.3389/fphar.2023.1271001.
[5] T. Nagasawa et al., “Konjac Glucomannan Attenuated Triglyceride Metabolism during Rice Gruel Tolerance Test.,” Nutrients, vol. 13, no. 7, Jun. 2021, doi: 10.3390/nu13072191.
[6] N. Sood, W. L. Baker, and C. I. Coleman, “Effect of glucomannan on plasma lipid and glucose concentrations, body weight, and blood pressure: systematic review and meta-analysis.,” The American journal of clinical nutrition, vol. 88, no. 4, pp. 1167–1175, Oct. 2008, doi: 10.1093/ajcn/88.4.1167.
[7] R. D. Devaraj, C. K. Reddy, and B. Xu, “Health-promoting effects of konjac glucomannan and its practical applications: A critical review.,” International journal of biological macromolecules, vol. 126, pp. 273–281, Apr. 2019, doi: 10.1016/j.ijbiomac.2018.12.203.
[8] N. E. Wardani, W. A. Subaidah, and H. Muliasari, “Ekstraksi dan Penetapan Kadar Glukomanan dari Umbi Porang (Amorphophallus muelleri Blume) Menggunakan Metode DNS,” Jurnal Sains dan Kesehatan, vol. 3, no. 3, pp. 383–391, 2021, doi: 10.25026/jsk.v3i3.574.
[9] M. Jayachandran, S. Christudas, X. Zheng, and B. Xu, “Dietary fiber konjac glucomannan exerts an antidiabetic effect via inhibiting lipid absorption and regulation of PPAR-γ and gut microbiome,” Food Chemistry, vol. 403, p. 134336, Sep. 2022, doi: 10.1016/j.foodchem.2022.134336.
[10] A. H. Safitri, N. Tyagita, and T. Nasihun, “Porang glucomannan supplementation improves lipid profile in metabolic syndrome induced rats,” Journal of Natural Remedies, vol. 17, no. 4, pp. 131–143, 2017, doi: 10.18311/jnr/2017/18125.
[11] J. Weng, M. Chen, B. Shi, D. Liu, S. Weng, and R. Guo, “Konjac glucomannan defends against high-fat diet-induced atherosclerosis in rabbits by promoting the PI3K/Akt pathway.,” Heliyon, vol. 9, no. 2, p. e13682, Feb. 2023, doi: 10.1016/j.heliyon.2023.e13682.
[12] P. M. Danawati, “Uji Preventif Tepung Umbi Porang (Amorphophallus muelleri Blume) Terhadap Kenaikan Kolesterol Total Tikus (Rattus norvegicus L.): Indonesia,” Jurnal Bioshell, vol. 11, no. 2, pp. 78–89, 2022.
[13] L. Hidayati, A. D. W. Widodo, and B. Hidayat, “Animal Models with Metabolic Syndrome Markers Induced by High Fat Diet and Fructose,” Medical Laboratory Technology Journal, vol. 6, no. 1 SE-Articles, May 2020, doi: 10.31964/mltj.v6i1.266.
[14] N. Mi et al., “Metabolomic analysis of serum short-chain fatty acid concentrations in a mouse of MPTP-induced Parkinson’s disease after dietary supplementation with branched-chain amino acids.,” Open medicine (Warsaw, Poland), vol. 18, no. 1, p. 20230849, 2023, doi: 10.1515/med-2023-0849.
[15] A. Mansniawati, E. Johannes, Magfira, and M. Tuwo, “Analisis Glukomanan Umbi Porang (Amorphophallus Muelleri Blume) dari Beberapa Daerah di Sulawesi Selatan Andi,” Ilmu Alam dan Lingkungan, vol. 14, no. 2, pp. 39–46, 2020.
[16] N. Qur’ani, Y. Yuliani, and S. K. Dewi, “Respons Morfologi dan Kadar Glukomannan Tumbuhan Porang (Amorphophallus muelleri Blume) pada Lingkungan yang Berbeda,” LenteraBio : Berkala Ilmiah Biologi, vol. 9, no. 1, pp. 74–81, 2021, doi: 10.26740/lenterabio.v9n1.p74-81.
[17] Nurlela, N. Ariesta, E. Santosa, and T. Muhandri, “Effect of harvest timing and length of storage time on glucomannan content in porang tubers,” IOP Conference Series: Earth and Environmental Science, vol. 299, p. 12012, Jul. 2019, doi: 10.1088/1755-1315/299/1/012012.
[18] E. Harmayani, V. Aprilia, and Y. Marsono, “Characterization of glucomannan from Amorphophallus oncophyllus and its prebiotic activity in vivo.,” Carbohydrate polymers, vol. 112, pp. 475–479, Nov. 2014, doi: 10.1016/j.carbpol.2014.06.019.
[19] G. den Besten, K. van Eunen, A. K. Groen, K. Venema, D.-J. Reijngoud, and B. M. Bakker, “The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism.,” Journal of lipid research, vol. 54, no. 9, pp. 2325–2340, Sep. 2013, doi: 10.1194/jlr.R036012.
[20] Anggela, E. Harmayani, W. Setyaningsih, and S. Wichienchot, “Prebiotic effect of porang oligo-glucomannan using fecal batch culture fermentation,” Food Science and Technology (Brazil), vol. 42, pp. 1–7, 2022, doi: 10.1590/fst.06321.
[21] A. Perdinan and Y. Larasati, “Konsentrasi Short Chain Fatty Acids dan potential Hydrogen dalam Jejunum Ayam Broiler yang Disuplementasi Glukomanan Porang (Amorphophallus onchophyllus),” Jurnal Pengembangan Penyuluhan Pertanian, vol. 16, p. 62, Sep. 2019, doi: 10.36626/jppp.v16i29.69.
[22] H. Itha’atur, “Pengaruh Konsumsi Jelly Mengandung Glukomannan Porang (Amorphophallus oncophillus) dan inulin Terhadap Profil Mikrobiota, Kadar SCFA dan SIgA Feses Orang Dewasa dengan Kelebihan Berat Badan,” Universitas Gajah Mada, 2021.
[23] I. G. A. N. Danuyanti and Z. S. A. Fahrurrozi, “Dietary Fiber and Dyslipidemia,” V. Y. Waisundara, Ed., Rijeka: IntechOpen, 2022, p. Ch. 3. doi: 10.5772/intechopen.98838.
[24] Z. Zhang, Y. Zhang, X. Tao, Y. Wang, B. Rao, and H. Shi, “Effects of Glucomannan Supplementation on Type II Diabetes Mellitus in Humans: A Meta-Analysis.,” Nutrients, vol. 15, no. 3, Jan. 2023, doi: 10.3390/nu15030601.
[25] A. Ghavami et al., “Soluble Fiber Supplementation and Serum Lipid Profile: A Systematic Review and Dose-Response Meta-Analysis of Randomized Controlled Trials.,” Advances in nutrition (Bethesda, Md.), vol. 14, no. 3, pp. 465–474, May 2023, doi: 10.1016/j.advnut.2023.01.005.
[26] Qona’ah, A. et al, “Correlation Between Risk Perception and Outcome Expectancies on Dietary Compliance in Diabetes Mellitus Patients”, Babali Nursing Research, vol. 3, no 3, pp. 194–201. Doi: https://doi.org/10.37363/bnr.2022.33122.